BMO - IMO QUALIFICATION TESTS
 ROMANIA

Problem 1. Let $a_{1}, a_{2}, a_{3}, a_{4}$ be the lengths of the sides of a quadrilateral and s its semi-perimeter. Prove that

$$
\sum_{i=1}^{4} \frac{1}{s+a_{i}} \leq \frac{2}{9} \sum_{1 \leq i<j \leq 4} \frac{1}{\sqrt{\left(s-a_{i}\right)\left(s-a_{j}\right)}}
$$

When does equality take place?

Călin Popescu

Problem 2. Let $\mathcal{R}_{i}, i=1,2, \ldots, n$, be a finite family of mutually disjoint closed rectangular surfaces whose sides are parallel to the coordinate axes. It is also known that the area of $\mathcal{R}=\bigcup_{i=1}^{n} \mathcal{R}_{i}$ is at least 4 and the projection onto Ox of their union is an interval.

Prove that \mathcal{R} contains three points which are the vertices of a triangle of area 1.
Dan Ismailescu
Problem 3. Find all injective functions $f: \mathbf{N} \rightarrow \mathbf{N}$ such that for each n,

$$
f(f(n)) \leq \frac{n+f(n)}{2}
$$

Problem 4. Consider an integer $n \geq 2$ and a disc \mathcal{D} in the complex plane. Prove that for every $z_{1}, z_{2}, \ldots, z_{n} \in \mathcal{D}$, there exists $z \in \mathcal{D}$ such that $z^{n}=z_{1} z_{2} \cdots z_{n}$.

Barbu Berceanu, Dan Schwartz, Dan Marinescu

Problem 5. A disc \mathcal{D} is divided into $2 n$ equal sectors, n of them are colored in red and the other n are colored in blue. Starting at an arbitrarily chosen sector we number from 1 to n, in a clockwise order, the red sectors. We proceed in the same way with the blue sectors, but in an anticlockwise order.

Prove that there exists a half-disc of \mathcal{D} which contains all the numbers from 1 to n.
Kvant
Problem 6. Which nonnegative integer values can be reached by the expression

$$
\frac{a^{2}+a b+b^{2}}{a b-1}
$$

Mircea Becheanu

Problem 7. Let a, b, c be integers, b be odd and consider the sequence $x_{0}=4, x_{1}=0, x_{2}=2 c, x_{3}=3 b$,

$$
x_{n}=a x_{n-4}+b x_{n-3}+c x_{n-2}, \text { for } n \geq 4
$$

Prove that if p is a prime and m a positive integer, then $x_{p^{m}}$ is divisible by p.
Călin Popescu
Problem 8. A square $A B C D$ is taken inside a circle γ. Inside the angle opposite to $\angle B A D$ is taken the circle tangent to the productions of the lines $A B$ and $A D$ and internally tangent to γ at A_{1}. Points B_{1}, C_{1}, D_{1} are defined in the same way.

Prove that the straight lines $A A_{1}, B B_{1}, C C_{1}, D D_{1}$ are concurrent.

Problem 9. Let $n>1$ be a positive integer and X be a set containing n elements. $A_{1}, A_{2}, \ldots, A_{101}$ are subsets of X such that the union of any 50 of them has more than $\frac{50}{51} n$ elements. Prove that there are of the given subsets such that any two of them have non-void intersection.

Gabriel Dospinescu
Problem 10. Prove that

$$
\frac{1}{3^{m} n} \sum_{k=0}^{m}\binom{3 m}{3 k}(3 n-1)^{k}
$$

is an integer, given n a positive integer and m an odd integer.
Călin Popescu
Problem 11. Let I be the incircle of the triangle $A B C$ and $A^{\prime}, B^{\prime}, C^{\prime}$ be its tangent points with the sides $B C, C A, A B$ respectively. Lines $A A^{\prime}$ and $B B^{\prime}$ intersect at P, lines $A C$ with $A^{\prime} C^{\prime}$ at M and $B^{\prime} C^{\prime}$ with $B C$ intersect at N. Prove that $I P$ and $M N$ are perpendicular.

Classical result
Problem 12. Let $n \geq 2$ be an integer and $a_{1}, a_{2}, \ldots, a_{n}$ real numbers. Prove that for any non-void subset $S \subset\{1,2, \ldots, n\}$ the following inequality is true

$$
\left(\sum_{i \in S} a_{i}\right)^{2} \leq \sum_{1 \leq i \leq j \leq n}\left(a_{i}+\cdots+a_{j}\right)^{2}
$$

